# Systems of Linear Inequalities in Two Variables

### **Key Definitions**

• Half-Plane: The region on a side of a line in the xy-plane.

### **Graphing Linear Inequalities in Two Variables**

- How to Graph Linear Inequalities in Two Variables:
  - **1.** Change the inequality sign to an equal sign, then plot the line.
    - If the inequality is < or >, make the line **dashed**.
    - If the inequality is  $\leq$  or  $\geq$ , make the line **solid**.
  - **2.** Test a point in one half plane created.
    - If it satisfies the inequality, the entire half-plane satisfies the inequality.
    - If it does not satisfy the inequality, the entire half-plane does not satisfy the inequality.
  - **3.** Test the other half-plane.
  - **4.** Shade in any half-planes that satisfy the inequality.
- **Example:** Graph the following inequality

$$v < 2x + 3$$

#### Step 1: Change the < to = and plot the line.



\*Notice that the line is <u>dashed</u> since the inequality is <.

Step 2: Test a point in the half-plane to the left of the line. Let's use the point (-1, 2) for this example.

y < 2x + 3

$$2 < 2(-1) + 3$$
  
 $2 < 1$ 

This point <u>does not</u> satisfy the inequality. Therefore, no point in the half-plane to the left of the line does not satisfy the inequality.

Step 3: Now test the other half-plane. For this example, let's use the point (0, 0).

$$y < 2x + 3$$
  
 $0 < 2(0) + 3$   
 $0 < 3$ 

This point <u>does</u> satisfy the inequality. Therefore, every point in the half-plane to the right of the line satisfies the inequality.

Step 4: Shade in the half-plane to the right of the line.



### • Graphing Systems of Linear Inequalities in Two Variables

- To graph a system of linear inequalities in two variables, we want to find every possible x and y-value that satisfies both inequalities, similar to how we wanted every possible x and y-value that satisfies both equations when we were solving systems of equations.
- How to Solve a System of Linear Inequalities in Two Variables:
  - **1.** Using the technique of graphing inequalities above, graph both of the inequalities given.
  - **2.** Draw the completed graph shading *only* the overlapped shaded regions from the first step.
- **Example:** Graph the following system of inequalities.

y < 3x + 2

$$y \ge -\frac{1}{2}x + 1$$

Step 1: Change the inequality signs to equal signs and plot the lines accordingly.

$$y < 3x + 2 \qquad y \ge -\frac{1}{2}x + 1$$
$$y = 3x + 2 \qquad y = -\frac{1}{2}x + 1$$
$$Dotted Line \qquad Solid Line$$

Testing Points:

$$y < 3x + 2$$
  
Test points (-1,2) and (0,0)  
 $2 < 3(-1) + 2$   $0 < 3(0) + 2$   
 $2 < 1$   $0 < 2$   
Does Not Satisfy Satisfies  
(left of line) (right of line)

$$y \ge -\frac{1}{2}x + 1$$
Test points (1,1) and (1,-1)  
 $1 < 3(1) + 2$   
 $1 < 3(-1) + 2$   
 $1 < 5$   
Satisfies  
(right of line)  
 $1 = 10^{-1}$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   
 $1 < -1$   

Step 2: Create the complete graph only including the overlapping shading in the upper right region of the graph.



## **The Linear Programming Model**

### **Key Definitions**

- **Optimization:** The process of minimizing or maximizing a certain function.
- Linear Programming: The graphical approach of solving optimization problems.
- **Objective Function:** The function representing what we are trying to optimize
- **<u>Constraints</u>**: A system of linear inequalities that helps us find feasible solutions.
- **<u>Feasible Solutions:</u>** Any possible solution or outcome.
- <u>Vertex</u>: The points where the lines in the constraints meet and bound the region of feasible solutions

### **Optimizing Using the Linear Programming Model**

- How to Solve an Optimization Problem Using Linear Programming:
  - **1.** Make sure that you are aware of your objective function and its constraints.
  - **2.** Graph the constraints (system of inequalities) so that we know what our feasible solutions are.
  - **3.** Identify the vertices and plug these values into the objective function.
  - **4.** Note that the smallest of these values you evaluates is the minimum and the largest value is the maximum.
- **Example:** Find the maximum and minimum value of the function z = 4x 2y + 1 bounded by

 $x \le 5$ ,  $x \ge 2$ ,  $y - x \le 2$ ,  $y - x \ge -2$ 

Step 1: Since we are finding the minimum and maximum of z = 4x - 2y + 1, this makes it our objective function. In other words, we are trying to find the maximum and minimum z-values when x and y are constrained.

Since this function is bounded by  $x \le 5$ ,  $x \ge 2$ ,  $y - x \le 2$ , and  $y - x \ge -2$ , these are the constraints.



Step 2: Graph the system of inequalities (constraints).

Step 3: We see that vertices form at the points (-2, 0), (-2, -4), (5, 7), (5, 3). Now, we will plug these values into the objective function.

(-2,0):  

$$z = 4x - 2y + 1$$
  
 $z = 4(-2) - 2(0) + 1$   
 $z = -7$ 

$$(-2, -4): z = 4x - 2y + 1 z = 4(-2) - 2(-4) + 1 z = 1$$

(5,7):  

$$z = 4x - 2y + 1$$
  
 $z = 4(5) - 2(7) + 1$   
 $z = 7$ 

(5,3): z = 4x - 2y + 1

$$z = 4(5) - 2(3) + 1$$
  
 $z = 15$ 

Step 4: Conclude that the maximum value is z = 15, which occurs at x = 5 and y = 3. Conclude that the minimum value is z = -7, which occurs at x = -2 and y = 0.

### Optimizing Using the Linear Programming Model in Unbounded Regions

- If a given region is unbounded, that means that there is not an exact shape and your shaded region continues to go towards infinity or negative infinity.
  - If the region goes towards infinity, there is no maximum.
    - Visual Example:



- If the region goes towards negative infinity, there is no minimum.
  - Visual Example:



 If the region goes towards infinity and negative infinity, there is no maximum or minimum. In other words, it cannot be optimized. This only occurs if our constraints form parallel lines.

#### Visual Example:

