Systems of Linear Inequalities in Two Variables

Key Definitions

Half-Plane: The region on a side of a line in the xy -plane.

Graphing Linear Inequalities in Two Variables

- **How to Graph Linear Inequalities in Two Variables:**
	- o **1.** Change the inequality sign to an equal sign, then plot the line.
		- If the inequality is $<$ or $>$, make the line **dashed**.
		- If the inequality is ≤ or ≥, make the line **solid.**
	- o **2.** Test a point in one half plane created.
		- If it satisfies the inequality, the entire half-plane satisfies the inequality.
		- If it does not satisfy the inequality, the entire half-plane does not satisfy the inequality.
	- o **3.** Test the other half-plane.
	- o **4.** Shade in any half-planes that satisfy the inequality.
- **Example:** Graph the following inequality

$$
y < 2x + 3
$$

Step 1: Change the $<$ *to* $=$ *and plot the line.*

***Notice that the line is dashed since the inequality is** <**.**

Step 2: Test a point in the half-plane to the left of the line. Let's use the point (−1, 2) for this example.

 $v < 2x + 3$

$$
2 < 2(-1) + 3
$$
\n
$$
2 < 1
$$

This point does not satisfy the inequality. Therefore, no point in the half-plane to the left of the line does not satisfy the inequality.

Step 3: Now test the other half-plane. For this example, let's use the point $(0, 0)$ *.*

$$
y < 2x + 3
$$
\n
$$
0 < 2(0) + 3
$$
\n
$$
0 < 3
$$

This point does satisfy the inequality. Therefore, every point in the half-plane to the right of the line satisfies the inequality.

Step 4: Shade in the half-plane to the right of the line.

Graphing Systems of Linear Inequalities in Two Variables

- To graph a system of linear inequalities in two variables, we want to find every possible x and y-value that satisfies both inequalities, similar to how we wanted every possible x and y -value that satisfies both equations when we were solving systems of equations.
- **How to Solve a System of Linear Inequalities in Two Variables:**
	- o **1.** Using the technique of graphing inequalities above, graph both of the inequalities given.
	- o **2.** Draw the completed graph shading *only* the overlapped shaded regions from the first step.
- **Example:** Graph the following system of inequalities.

 $v < 3x + 2$

$$
y \ge -\frac{1}{2}x + 1
$$

Step 1: Change the inequality signs to equal signs and plot the lines accordingly.

$$
y < 3x + 2 \qquad y \ge -\frac{1}{2}x + 1
$$

$$
y = 3x + 2 \qquad y = -\frac{1}{2}x + 1
$$

Dotted Line Solid Line

Testing Points:

$$
y < 3x + 2
$$

\n
$$
Test points (-1,2) and (0,0)
$$

\n
$$
2 < 3(-1) + 2
$$

\n
$$
0 < 3(0) + 2
$$

\n
$$
0 < 2
$$

\n
$$
Does Not Satisfy
$$

\n*(left of line)*
\n*(right of line)*

 ≥ − 1 2 + 1 *Test points* (1,1) *and* (1, −1) 1 < 3(1) + 2 1 < 3(−1) + 2 1 < 5 1 < −1 *Satisfies Does Not Satisfy (right of line) (left of line)* -10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10

Step 2: Create the complete graph only including the overlapping shading in the upper right region of the graph.

The Linear Programming Model

Key Definitions

- **Optimization:** The process of minimizing or maximizing a certain function.
- **Linear Programming:** The graphical approach of solving optimization problems.
- **Objective Function:** The function representing what we are trying to optimize
- **Constraints:** A system of linear inequalities that helps us find feasible solutions.
- **Feasible Solutions:** Any possible solution or outcome.
- **Vertex:** The points where the lines in the constraints meet and bound the region of feasible solutions

Optimizing Using the Linear Programming Model

- **How to Solve an Optimization Problem Using Linear Programming:**
	- o **1.** Make sure that you are aware of your objective function and its constraints.
	- o **2.** Graph the constraints (system of inequalities) so that we know what our feasible solutions are.
	- o **3.** Identify the vertices and plug these values into the objective function.
	- o **4.** Note that the smallest of these values you evaluates is the minimum and the largest value is the maximum.
- **Example:** Find the maximum and minimum value of the function $z = 4x 2y + 1$ bounded by

 $x \leq 5$, $x \geq 2$, $y-x \leq 2$, $y-x \geq -2$

Step 1: Since we are finding the minimum and maximum of $z = 4x - 2y + 1$ *, this makes it our objective function. In other words, we are trying to find the maximum and minimum -values when and are constrained.*

Since this function is bounded by $x \le 5$, $x \ge 2$, $y - x \le 2$, and $y - x \ge -2$, these *are the constraints.*

Step 2: Graph the system of inequalities (constraints).

Step 3: We see that vertices form at the points (−2, 0), (−2, −4), (5, 7), (5, 3). Now, *we will plug these values into the objective function.*

$$
(-2,0): \t z = 4x - 2y + 1
$$

$$
z = 4(-2) - 2(0) + 1
$$

$$
z = -7
$$

$$
(-2, -4):
$$
 $z = 4x - 2y + 1$
 $z = 4(-2) - 2(-4) + 1$
 $z = 1$

(5,7):
$$
z = 4x - 2y + 1
$$

$$
z = 4(5) - 2(7) + 1
$$

$$
z = 7
$$

(5,3): $z = 4x - 2y + 1$

$$
z = 4(5) - 2(3) + 1
$$

$$
z = 15
$$

Step 4: Conclude that the maximum value is $z = 15$ *, which occurs at* $x = 5$ *and* $y = 3$ *. Conclude that the minimum value is* $z = -7$ *, which occurs at* $x = -2$ *and* $y = 0$ *.*

Optimizing Using the Linear Programming Model in Unbounded Regions

- If a given region is unbounded, that means that there is not an exact shape and your shaded region continues to go towards infinity or negative infinity.
	- o If the region goes towards infinity, there is no maximum.
		- **Visual Example:**

- o If the region goes towards negative infinity, there is no minimum.
	- **Visual Example:**

o If the region goes towards infinity and negative infinity, there is no maximum or minimum. In other words, it cannot be optimized. This only occurs if our constraints form parallel lines.

visual Example:

