Systems of Linear Inequalities in Two
Variables

Key Definitions

e Half-Plane: The region on a side of a line in the xy-plane.

Graphing Linear Inequalities in Two Variables

e How to Graph Linear Inequalities in Two Variables:
o 1. Change the inequality sign to an equal sign, then plot the line.
= |f the inequality is < or >, make the line dashed.
= [f the inequality is < or =, make the line solid.
o 2. Testa pointin one half plane created.
= [f it satisfies the inequality, the entire half-plane satisfies the inequality.
= [fit does not satisfy the inequality, the entire half-plane does not satisfy
the inequality.
o 3. Test the other half-plane.
o 4. Shade in any half-planes that satisfy the inequality.
e Example: Graph the following inequality
y<2x+3
Step 1: Change the < to = and plot the line.
y=2x+3
10 7
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*Notice that the line is dashed since the inequality is <.
Step 2: Test a point in the half-plane to the left of the line. Let’s use the point (—1,2)
for this example.
y<2x+3
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<2(-1)+3
2<1
This point does not satisfy the inequality. Therefore, no point in the half-plane to the
left of the line does not satisfy the inequality.

Step 3: Now test the other half-plane. For this example, let’s use the point (0, 0).
<2x+3
<2(0)+3
0<3
This point does satisfy the inequality. Therefore, every point in the half-plane to the
right of the line satisfies the inequality.

Step 4: Shade in the half-plane to the right of the line.
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e Graphing Systems of Linear Inequalities in Two
Variables

e To graph a system of linear inequalities in two variables, we want to find every possible
x and y-value that satisfies both inequalities, similar to how we wanted every possible x
and y-value that satisfies both equations when we were solving systems of equations.

e How to Solve a System of Linear Inequalities in Two Variables:

o 1. Using the technique of graphing inequalities above, graph both of the
inequalities given.

o 2. Draw the completed graph shading only the overlapped shaded regions from
the first step.

e Example: Graph the following system of inequalities.
y<3x+2
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Step 1: Change the inequality signs to equal signs and plot the lines accordingly.

1
y<3x+2 y2—§x+1

1
y=3x+2 y=—§x+1

Dotted Line Solid Line
Testing Points:
y<3x+2
Test points (—1,2) and (0,0)
2<3(—1)+2 0<3(0)+2
2<1 0<2
Does Not Satisfy Satisfies
(left of line) (right of line)
1
y=-— Ex +1
Test points (1,1) and (1,—1)
1<3(1)+2 1<3(-1)+2
1<5 1<-1
Satisfies Does Not Satisfy
(right of line) (left of line)
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Step 2: Create the complete graph only including the overlapping shading in the upper right
region of the graph.
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The Linear Programming Model

Key Definitions

e Optimization: The process of minimizing or maximizing a certain function.

e Linear Programming: The graphical approach of solving optimization problems.
e Objective Function: The function representing what we are trying to optimize
e Constraints: A system of linear inequalities that helps us find feasible solutions.

e Feasible Solutions: Any possible solution or outcome.
e Vertex: The points where the lines in the constraints meet and bound the region of
feasible solutions

Optimizing Using the Linear Programming Model

e How to Solve an Optimization Problem Using Linear Programming:
o 1. Make sure that you are aware of your objective function and its constraints.
o 2. Graph the constraints (system of inequalities) so that we know what our
feasible solutions are.
o 3. ldentify the vertices and plug these values into the objective function.
o 4. Note that the smallest of these values you evaluates is the minimum and the
largest value is the maximum.
e Example: Find the maximum and minimum value of the functionz = 4x — 2y + 1
bounded by
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Step 1: Since we are finding the minimum and maximum of z = 4x — 2y + 1, this
makes it our objective function. In other words, we are trying to find the maximum
and minimum z-values when x and y are constrained.

Since this function is bounded by x <5, x > 2, y—x < 2,and y — x > —2, these
are the constraints.

Step 2: Graph the system of inequalities (constraints).

10

Step 3: We see that vertices form at the points (—2,0),(—2,—4),(5,7), (5,3). Now,
we will plug these values into the objective function.

(=2,0): z=4x—-2y+1
z=4(-2)-2(0)+1
z=-7

(-2, —4): z=4x—2y+1
z=4(-2)-2(-4)+1
z=1

(5,7): z=4x—-2y+1
z=405)-2(7)+1
z=7

(5,3): z=4x—-2y+1
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z=4()-2(3) +1
z=15

Step 4: Conclude that the maximum value is z = 15, which occursat x = 5and y = 3.
Conclude that the minimum value is z = —7, which occurs at x = —2 andy = 0.

Optimizing Using the Linear Programming Model in
Unbounded Regions

e If agiven region is unbounded, that means that there is not an exact shape and your
shaded region continues to go towards infinity or negative infinity.
o If the region goes towards infinity, there is no maximum.
= Visual Example:

/

o If the region goes towards negative infinity, there is no minimum.
= Visual Example:

.

o If the region goes towards infinity and negative infinity, there is no maximum or
minimum. In other words, it cannot be optimized. This only occurs if our
constraints form parallel lines.
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= Visual Example:
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