Linear Inequalities

Key Definitions

• <u>Linear Inequality</u>: A linear inequality is a linear relation that uses one of the four inequality symbols instead of the equals sign used in linear equations.

Example: $9x + 2 \ge 11$ is a linear inequality

• **Union**: The union of two sets (*A* ∪ *B*) is the set formed by combining all the elements from both sets.

Example: $A = \{George, Samuel, Yvette\}$ $B = \{Ellen, Ryan, Yvette\}$ $A \cup B = \{Ellen, George, Samuel, Ryan, Yvette\}$

• Intersection: The intersection of two sets (*A* ∩ *B*) is the set formed by the elements that are in both sets.

Example: $A = \{George, Samuel, Yvette\}$ $B = \{Ellen, Ryan, Yvette\}$ $A \cup B = \{Yvette\}$

Solving Linear Inequalities

- Linear inequalities are solved like linear equations. A linear equation gives you an exact solution that makes the equation true such as x = 3, but a linear inequality gives you an interval or range of numbers that make the inequality true such as $x \le 3$.
- **Example:** Solve the following equation and inequality.

5 = 3 - 2x	$5 \le 3 - 2x$
5-3 = -2x	$5 - 3 \le -2x$
2 = -2x	$2 \leq -2x$
$\frac{2}{2} = \frac{-2x}{2}$	$\frac{2}{2} < \frac{-2x}{2}$
-2 -2	-2 -2 -2
-1 = x	$-1 \ge x$
x = -1	$x \leq -1$

NOTE: When multiplying or dividing an inequality by a negative number the inequality sign switches. Also notice how the equation gives only one solution, x = -1, and the inequality gives a range of solutions which can be written as any of the following:

Inequality Notation	Set Notation	Interval Notation	Number Line
<i>x</i> ≤ −1	$\{x x \le -1\}$	(−∞,−1]	-1

Solving Double Linear Inequalities

- Double linear inequalities are solved in the same way as a single linear inequality. The main thing to remember is if you apply one operation to a part of the inequality then you have to apply it to each part. This is the same thing as equations. If you add 2 to the left side, then you must add 2 to the right side as well.
- **Example:** Solve the following double linear inequality: 2x + 1 < 4x + 2 < 2x + 5

$$2x + 1 < 4x + 2 < 2x + 5$$

$$2x - 2x + 1 < 4x - 2x + 2 < 2x - 2x + 5$$

$$1 < 2x + 2 < 5$$

$$1 - 2 < 2x + 2 - 2 < 5 - 2$$

$$-1 < 2x < 3$$

$$\frac{-1}{2} < \frac{2x}{2} < \frac{3}{2}$$

$$-\frac{1}{2} < x < \frac{3}{2}$$

Symbol Guide

Algebra Review Symbols			
Term	Symbol	Use	
Less than	<	Identifies the quantity to the left of the symbol as being less than the quantity to the right of the symbol	
Greater than	>	Identifies the quantity to the left of the symbol as being greater than the quantity to the right of the symbol	
Less than or equal to	≤	Identifies the quantity to the left of the symbol as being less than or equal to the quantity to the right of the symbol	
Greater than or equal to	2	Identifies the quantity to the left of the symbol as being greater than or equal to the quantity to the right of the symbol	
Union	U	Combines the elements of two sets into one set	
Intersection	Ω	Creates a set of the common elements from two sets	

Polynomial and Rational Inequalities

Key Definitions

- **Polynomial Inequalities:** A polynomial inequality has a degree of 2 or higher.
- **Zeros:** The zeros of a polynomial are the values of *x* that make the polynomial equal to zero.
- <u>Test Intervals</u>: The zeros of a polynomial divide the real number line into test intervals where the value of the polynomial is either positive or negative.

Solving Polynomial Inequalities

• Example: Solve the following quadratic inequality: $x^2 - 5x \le 6$ Step 1: Write the inequality in standard form and factor the left side.

$$x^{2} - 5x - 6 \le 0$$

(x - 6)(x + 1) \le 0

Step 2: Identify zeros.

$$(x-6)(x+1) = 0$$

 $x = 6 \text{ or } x = -1$

Step 3: Draw the number line with zeros labeled.

Step 4: Determine the sign of the polynomial in each interval by testing a value of x from that interval.

$$\begin{array}{cccc} & (-)(-) = (+) & (-)(+) = (-) & (+)(+) = (+) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Step 5: Identify which interval(s) make the inequality true.

The intervals where the value is negative make this inequality true as (x - 6)(x + 1) must be equal to or less than zero so here it is the interval between -1 and 6.

Step 6: Write the solution in interval notation.

[-1,6]

NOTE: Polynomial inequalities with higher degrees will have more test intervals as there are more zeros to consider.

Solving Rational Inequalities

• **Example:** Solve the following rational inequality: $\frac{x-3}{x^2-25} \ge 0$ Step 1: Factor the numerator and denominator if possible.

$$\frac{x-3}{(x+5)(x-5)} \ge 0$$

Step 2: Identify the zeros of the numerator and denominator and state the domain restrictions (aka the values that make the denominator zero).

Zeros:
$$x = 3, x = -5, x = 5$$

Domain Restrictions:
$$x \neq -5, x \neq 5$$

Step 3: Draw the number line with zeros labeled.

Step 4: Test the intervals.

$$\begin{array}{cccc} x = -6 & x = 0 & x = 4 & x = 6 \\ \hline (-6-3) & (0-3) & (0-3) & (4-3) & (6-3) \\ \hline (-6+5)(-6-5) & (0+5)(0-5) & = \frac{(4-3)}{(4+5)(4-5)} & \frac{(6-3)}{(6+5)(6-5)} \\ = \frac{(-9)}{(-1)(-11)} & = \frac{(-3)}{(5)(-5)} & = \frac{(1)}{(9)(-1)} & = \frac{(3)}{(11)(1)} \\ = -\frac{9}{11} & = \frac{3}{25} & = -\frac{1}{9} & = \frac{3}{11} \end{array}$$

Step 5: Identify which interval(s) make the inequality true.

The intervals where the value is positive make this inequality true as $\frac{x-3}{(x+5)(x-5)}$ must be equal to or greater than zero so here it is the intervals (-5, 3] and $(5, \infty)$.

Step 6: Write the solution in interval notation.

(-5,3] ∪ (5,∞)

Notice that we use a bracket for the 3 and parentheses for the -5 and 5 as we stated earlier that we could not use -5 or 5 in the domain.

Absolute Value Equations and Inequalities

Absolute Value

 <u>Definition</u>: The absolute value of a real number a, denoted by the symbol |a|, is defined by:

$$|a| = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}$$

- **<u>Properties of Absolute Value</u>**: For all real numbers *a* and *b*,
 - \circ $|a| \ge 0$ (the absolute value of any number is positive or zero).

$$\circ |-a| = |a|$$

Example: $|-7| = |7| = 7$

$$|ab| = |a| \cdot |b| = |a||b| Example: |3x| = |3||x| = 3x$$

$$\circ \left|\frac{a}{b}\right| = \frac{|a|}{|b|} \text{ where } b \neq 0$$

Example: $\left|\frac{-3}{4}\right| = \frac{|-3|}{|4|} = \frac{3}{4}$

Distance Between Two Points on a Number Line: If a and b are real numbers, the distance between a and b is the absolute value of their difference given by |a − b| or |b − a|.

Example: Find the difference between -3 and 7 on the real number line.

$$|7 - (-3)| = |7 + 3| = |10| = 10$$

Note: The order of *a* and *b* inside the absolute value bars does not matter, so |a - b| = |b - a| regardless of what *a* and *b* are.

Equations and Inequalities with Absolute Values

• <u>Absolute Value Equation</u>: If |x| = a, then x = -a or x = a, where $a \ge 0$ Example: Solve |5x - 1| = 9. If the absolute value of an x = 2 $x = \frac{-8}{5}$ expression is 9, then that expression is -9 or 9 5x - 1 = 9 or 5x - 1 = -95x = 10 5x = -8 The solution set is $\left\{2, \frac{-8}{5}\right\}$

• <u>Properties of Absolute Value Inequalities</u>:

 \circ |x| < a is equivalent to -a < x < a

