Exponential Functions

Exponential Functions

- An exponential function with base *b* is denoted by $f(x) = b^x$ where *b* and *x* are any real numbers such that $b > 0$ and $b \ne 1$. Review sections 0.2-0.3 for properties of exponents.
- **Example 1:** Let $f(x) = 4^x$, $h(x) = \frac{1}{2}$ 9 x^{x} , $g(x) = 10^{x-1}$. Find the following values. If an approximation is required, approximate to four decimal places.

$$
f(2), f(\pi), h\left(-\frac{3}{2}\right), g(2.3), f(0), h(0)
$$

$$
f(2) = 4^2 = 16
$$

$$
f(\pi) = 4^{\pi} \approx 77.8802
$$

$$
h\left(-\frac{3}{2}\right) = \frac{1}{9} = 9^{3/2} = \sqrt{9}^3 = 3^3 = 27
$$

$$
g(2.3) = 10^{2.3-1} = 10^{1.3} \approx 19.9526
$$

$$
f(0) = 4^0 = 1
$$

$$
h(0) = \frac{1}{9} = 1
$$

Graphs of Exponential Functions

 Exponential functions can be graphed by plotting points. Usually, it is useful to find the points for $x = 0, 1, -1$.

Example 1: Graph the function $f(x) = 4^x$. Label the y-intercept by finding $f(x) = 4^x$ when $x = 0$.

$$
f(0)=4^0=1
$$

First point is (0, 1). Then find $f(1)$ and $f(-1)$.

$$
f(1) = 41 = 4
$$

$$
f(-1) = 4-1 = 0.25
$$

Plot the points and then sketch the curve with a horizontal asymptote.

Example 2: Graph the function $f(x) = 2^{x+1} - 2$. State the domain and range of the function.

First, identify the base function: $f(x) = 2^x$

Identify the base function y-intercept and horizontal asymptote: $(0, 1)$ and $y = 0$.

Since a 1 is added to x, the graph is shifted one unit to the left.

Since a 2 is subtracted from 2^{x+1} , the graph is shifted two units down.

Shift the y-intercept from $(0, 1)$ to $(0-1, 1-2) = (-1, -1)$.

Shift the horizontal asymptote down two units from $y = 0$ to $y = -2$.

Find additional points on the graph. $f(0) = 2^{0+1} - 2 = 2 - 2 = 0$

$$
f(1) = 2^{1+1} - 2 = 4 - 2 = 2
$$

Plot the points and sketch the graph with a smooth curve.

The domain of the function is ($-\infty$, ∞). The range of the function is $(-2, \infty)$.

The Natural Base e

 The irrational number e appears in many applications and is called the natural base. The exponential function with base e $f(x) = e^x$ is called the exponential function or the natural exponential function.

 $e \approx 2.71828$

Example 1: Graph the function $f(x) = 3 + e^{2x}$. First, create a table with points to plot on the graph.

Note: These values need to be found using a calculator and will need to be rounded.

Applications

- Exponential functions describe either growth or decay.
- **Example 1**: Doubling Time of Populations **Use the doubling time growth model**:

$$
P = P_0 2^{t/d}
$$

P is the population at time t. P_0 is the population at time $t = 0$. d is the doubling time.

The current population of an island is 800,000, and the population is expected to double in 20 years. Estimate the population in 4 years. Round your answer to the nearest thousand.

$$
P_0 = 800000, t = 4, d = 20
$$

$$
P = P_0 2^{t/d} = (800000) \left(2^{\frac{4}{20}} \right) = (800000)(2^{\frac{1}{5}}) \approx 918959
$$

In 4 years, there will be approximately 919,000 people on the island.

Example 2: Radioactive Decay: half-life

Use the half-life model:

The radioactive isotope of potassium which is used in the diagnosis of brain tumors, has a half-life of 12.36 hours. If 700 milligrams of this potassium are taken, how many milligrams will remain after 48 hours? Round to the nearest milligram.

1 2 $)^{t/h}$

 $A = A_0($

$$
A_0 = 700, t = 48, h = 12.36
$$

$$
A = 700 \left(\frac{1}{2}\right)^{48/12.36} \approx 700(0.0678) \approx 47.46
$$

After 48 hours, there are approximately 47 milligrams of potassium left.

Example 3: Compound Interest

If a principal P is invested at an annual rate r compounded n times a year, then the amount A in the account at the end of t years is given by

$$
A = P(1 + \frac{r}{n})^{nt}
$$

The annual interest rate r is expressed as a decimal.

If \$4500 is deposited in an account paying 4% compounded monthly, how much will you have in the account in 8 years?

$$
P = 4500, r = 0.04, n = 12, t = 8
$$

$$
A = 4500(1 + \frac{0.04}{12})^{12*8} = 4500(1 + \frac{0.04}{12})^{96} \approx 6193.78
$$

You will have approximately \$6193.78 in the account.

Example 4: Continuous Compound Interest

If a **principal** *P* is invested at an annual **rate** *r* **compounded continuously**, then the **amount** *A* in the account at the end of *t* years is given by

$$
A = Pe^{rt}
$$

The annual interest rate *r* is expressed as a decimal.

If \$5000 is deposited in a savings account paying 3.5% a year compounded continuously, how much will you have in the account in 8 years?

$$
P = 5000, r = 0.035, t = 8
$$

$$
A = (5000)e^{0.035*8} = (5000)e^{0.28} \approx 6615.65
$$

There will be \$6615.65 in the account in 8 years.

Logarithmic Functions

Logarithmic Functions

For $x > 0$, $b > 0$, and $b \ne 1$, the **logarithmic function** with **base** *b* is denoted by $f(x) = \log_b x$ where

$$
y = \log_b x
$$
 if and only if $x = b^y$

Read "log base b of x"

Example 1: Rewrite the following logarithms in exponential form using

 $y = log_b x$ if and only if $x = b^y$

Where b , the base, is represented in green, x , the information within our logarithm and the solution in our exponential, is represented in blue, and y , the solution to our logarithm and the exponent in our exponential is represented in pink.

a) $\log_3 9 = 2$

Exponential form: $9 = 3^2$

b) $\log_5 125 = 3$

Exponential form: $125 = 5^3$

c) $\log_{64} 8 = \frac{1}{2}$ 2

> Exponential form: $8 = 64^{\frac{1}{2}}$ 2

Example 2: Rewrite the following exponentials in logarithmic form using

 $y = log_b x$ if and only if $x = b^y$

Where $\mathbf b$, the base, is represented in green, x, the information within our logarithm and the solution in our exponential, is represented in blue, and y , the solution to our logarithm and the exponent in our exponential is represented in pink.

a) $216 = 6^3$

Logarithmic form: $log_3 9 = 2$

b)
$$
125 = 5^3
$$

Logarithmic form: $log_3 9 = 2$

c) $125 = 5^3$

Logarithmic form: $\log_3 9 = 2$

Example 3: Evaluate the exact value of the following logarithm:

 $\log_2 8$ = ?

Step 1: Figure out the base of the exponent.

 $\log_2 8$ = ?

Our base in this problem is 2

Step 2: Ask yourself "2 *to what power* will give me 8?"

We know that 2 to the power of 3 is 8

Step 3: Change the logarithm into exponential form

$2^3 = 8$

Common and Natural Logarithms

- The bases 10 and e are 2 of the most common logarithmic functions. Because they are common, we rewrite the logarithm in a simpler way.
	- \circ Instead of $\log_{10} x$, you will most likely see it written as $\log x$. In other words, if there is no base written on your logarithm, you may assume it is base 10
	- o Instead of $\log_e x$, you will most likely see it written as $\ln x$. In other words, ln is another way to write a logarithm with base e.

Graphs of Logarithmic Functions

• Below is the graph of $f(x) = \log x$

 Interpreting the graph: To begin interpreting the graph, let's take a look at a few major points.

7

- **Key features of the graph:**
	- \circ $f(x) = \log x$ has a vertical asymptote at x = 0 (the y-axis).
	- \circ Negative x-values *cannot* be evaluated in the function $f(x) = \log x$. They *do not exist*.
	- o The domain of a logarithmic function is $(0, \infty)$.
	- o The range of a logarithmic function is (−∞, ∞).

Applications

A **decibel** can be defined as

$$
D=10\log\frac{I}{I_T}
$$

Where D is decibel level (dB), I is the measure of intensity (watts per square meter), and I_T is the intensity threshold of the least audible sound a human is able to hear. In further problems, we will use $I_T = 1 \times 10^{-12} \frac{W}{m^2}$.

 Example 1: Calculate the decibel level associated with the typical sound intensity of a rock band playing with intensity of $I = 1 \times 10^{-1}$.

$$
D = 10 \log \frac{I}{I_T}
$$

\n
$$
D = 10 \log \frac{1 \times 10^{-1}}{1 \times 10^{-12}}
$$

\n
$$
D = 10 \log(1 \times 10^{11})
$$

\n
$$
D = 10 \log(10^{11})
$$

\n
$$
D = 10 \cdot 11
$$

\n
$$
D = 110 \frac{w}{m^2}
$$

 The **Richter scale** is used to determine the magnitude of an earth quake. Its equation is given by:

$$
M = \frac{2}{3} \log \frac{E}{E_0}
$$

Where M is the magnitude, E is the seismic energy released by the earthquake (in joules) and E_0 is the energy released by a reference earthquakes ($E_0 = 10^{4.4}$ joules).

 Example 2: 1.23 Using the Richter scale, what is the magnitude of an earthquake that released 1.27×10^{15} joules of seismic energy.

$$
M = \frac{2}{3} \log \frac{E}{E_0}
$$

$$
M = \frac{2}{3} \log \frac{1.27 \times 10^{15}}{10^{4.4}}
$$

$$
M = \frac{2}{3} \log(1.27 \times 10^{10.6})
$$

$$
M \approx \frac{2}{3} (10.704)
$$

$$
M \approx 7.136
$$

Properties of Logarithms

Properties of Logarithms

- If b, M, and N are positive real numbers, where $b \neq 1$ and p and x are real numbers, then the following are true:
	- **1.** $\log_b 1 = 0$ **2.** $\log_b b = 1$
	- **3.** $\log_b b^x = x$ **4.** *b* **4.** $b^{\log_b x} = x \quad x > 0$
	- **5.** Product Rule: Log of a product is the sum of the logs.

 $\log_h MN = \log_h M + \log_h N$

6. Quotient Rule: Log of a quotient is the difference of the logs.

$$
\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N
$$

7. Power Rule: Log of a number raised to an exponent is the exponent times the log of the number.

$$
\log_b M^p = p \log_b M
$$

Example 1: Use the properties of logs to simplify the following expressions.

a) $\log 1 - \log 1000^x$

Since $\log x$ has base 10, we view this expression as $\log_{10} 1 - \log_{10} 1000^x$. Then use properties 1 and 3 to simplify the expression.

$$
\log 1 - \log 1000^x = 0 - \log(10^3)^x = -\log 10^{3x} = -3x
$$

b) $e^{-3 \ln 2}$

Use properties of exponents first, then use property 4 of logarithms.

$$
e^{-3\ln 2} = (e^{\ln 2})^{-3} = \frac{1}{(e^{\ln 2})^3} = \frac{1}{2^3} = \frac{1}{8}
$$

c) $\log_6 \frac{24}{72}$ 72

Use the quotient, product, and power rules first, then simplify using properties 2 and 3.

$$
\log_6 \frac{18}{108} = \log_6 18 - \log_6 108 = \log_6 6 + \log_6 3 - \log_6 6^2 - \log_6 3
$$

$$
= 1 + \log_6 3 - 2\log_6 6 - \log_6 3 = 1 - 2 + \log_6 3 - \log_6 3 = -1
$$

• Example 2: Write $\frac{1}{4}$ **ln** $(x^2 + 3) - \frac{1}{3}$ $\frac{1}{3}$ **ln**(x^3 – 5) + **ln**(x + 2) as a single logarithm.

Use the power property on the first and second terms.

Use the quotient property on the first and second terms.

Use the product property.

$$
= \ln \frac{(x^2 + 3)^{1/4}}{(x^3 - 5)^{1/3}} + \ln(x + 2)
$$

$$
= \ln \left[\frac{(x + 2)(x^2 + 3)^{1/4}}{(x^3 - 5)^{1/3}} \right]
$$

 $= \ln(x^2 + 3)^{1/4} - \ln(x^3 - 5)^{1/3} + \ln(x + 2)$

- **Example 3:** Write $\log \left[\frac{x^2+8x-9}{x^2-4x-1}\right]$ $\frac{x+6x-9}{x^2-4x-12}$ as the sum or difference of logarithms.
	- Factor the numerator and $\begin{aligned} \text{de}_{\text{nonlinear}} = \log \left| \right. \end{aligned}$ $(x + 9)(x - 1)$ $(x + 2)(x - 6)$] Use the quotient property. $= \log[(x+9)(x-1)] - \log[(x+2)(x-6)]$ Use the product property. $= \log(x + 9) + \log(x - 1) - [\log(x + 2) + \log(x - 6)]$ Eliminate brackets. $= \log(x + 9) + \log(x - 1) - \log(x + 2) - \log(x - 6)$

Change-of-Base Formula

• For any logarithmic bases a and b and any positive number M , the change-of-base formula says that

$$
\log_b M = \frac{\log_a M}{\log_a b}
$$

• Example 1: Use the change-of-base formula to evaluate $\log_5 26$. Round to four decimal places.

Example 2: Use the change-of-base formula to evaluate $\log_{\pi} e$. Round to four decimal places.

Use the change-of-base formula where $a = e$. $log_{\pi} e =$ ln $\ln \pi$ = 1 $\ln \pi$ Approximate with a calculator

 $≈ 0.8735685268$

≈ . 873