Exponential and Logarithmic Equations

Exponential Equations

- The following are true when b > 0 and $b \neq 1$.
 - 1. One-to-one properties:
 - a. $\boldsymbol{b}^x = \boldsymbol{b}^y$ when $\boldsymbol{x} = \boldsymbol{y}$
 - b. $\log_b x = \log_b y$ when x = y
 - 2. Inverse Properties
 - a. $b^{\log_b x} = x$ when x > 0
 - b. $\log_{b} b^{x} = x$
 - **Example 1:** Use the one-to-one properties to solve the following exponential equations.

a)
$$4^x = 64$$

Rewrite both sides of the equation in terms of the same base.	$4^x = 4^3$
Use the one-to-one property to identify x .	<i>x</i> = 3
b) $6^{10-4x} = 36$	
Rewrite both sides of the equation in terms of the same base.	$6^{10-4x} = 6^2$
Use the one-to-one property.	10 - 4x = 2
Solve for <i>x</i> .	x = 2
c) $\left(\frac{1}{5}\right)^{3y} = 125$	
Use the negative-integer exponent property. (i.e. $\frac{1}{5} = 5^{-1}$)	$5^{-3y} = 125$
Rewrite both sides of the equation in terms of the same base.	$5^{-3y} = 5^3$
Use the one-to-one property.	-3y = 3
Solve for <i>y</i> .	y = -1

 Example 2: Use the inverse properties to solve the following exponential equations. Round to four decimal places.
 a) 10^{3x+5} = 64

 $\log 10^{3x+5} = \log 64$ Take the common logarithm of both sides. $3x + 5 = \log 64$ Use the inverse property. $x = \frac{\log 64 - 5}{3} \approx -1.0646$ Solve for *x*. **b)** $6^{5x-3} = 17$ $\log_6 6^{5x-3} = \log_6 17$ Take the logarithm with base 6 of both sides. $5x - 3 = \log_6 17$ Use the inverse property. $x = \frac{\log_6 17 + 3}{5}$ Solve for *x*. $x = \frac{\frac{\ln 17}{\ln 6} + 3}{5}$ Use the change-of-basis formula, $\log_6 17 = \frac{\ln 17}{\ln 6}$. Use a calculator to approximate x to $x \approx .9162$ four decimal places. c) $e^{2x} - 6e^x + 8 = 0$ Let $u = e^x$. (Note: $u^2 = e^x \cdot e^x =$ $u^2 - 6u + 8 = 0$ e^{2x} .) (u-4)(u-2) = 0Factor the trinomial. u = 4 or u = 2Solve for *u*. $e^{x} = 4$ or $e^{x} = 2$ Substitute $u = e^x$. $\ln e^{x} = \ln 4$ or $\ln e^{x} = \ln 2$ Take the natural logarithm of both sides. $x = \ln 4$ or $x = \ln 2$ Use the inverse property. $x \approx 1.3863$ or $x \approx .6931$ Approximate the right sides.

Logarithmic Equations

 Examples: Use the one-to-one properties to solve the following logarithmic equations. Round to four decimal places.

 $\log_2(4x - 10) = \log_2[x(x - 3)]$ Apply the product property on the right side. 4x - 10 = x(x - 3)Use the one-to-one property. $x^2 - 7x + 10 = 0$ Distribute and simplify. (x-5)(x-2) = 0Factor. Solve for *x*. x = 5 or x = 2undefined Eliminate x = -1 because $\log_3(-1)$ $x = 2 : \log_3(2) = \log_3(2) + \log_3(-1)$ is undefined. $x = 5 : \log_3(10) = \log_3(5) + \log_3(2)$ $= \log_3[5(2)] = \log_3(10) \checkmark$ **b)** $\log_2(8x) - \log_2(x-6) = 5$ Use the quotient property on the $\log_2\left(\frac{8x}{x-6}\right) = 5$ left side. $\frac{8x}{x-6} = 2^5$ Write the equation in exponential form: $\log_h x = y \Rightarrow x = b^y$. $8x = 2^5(x - 6)$ Multiply the equation by: x - 6. 8x = 32x - 192Simplify the right side. -24x = -192Solve for *x*. x = 8 $\log_{2}[8 \cdot 8] - \log_{2}[8 - 6]$ Check. $= \log_{2}[64] - \log_{2}[2] = 6 - 1 = 5 \checkmark$ c) $\ln(5 - x^2) = 3$ $5 - x^2 = e^3$ Write in exponential form. $x^2 = 5 - e^3$ Simplify.

a) $\log_3(4x - 10) = \log_3(x) + \log_3(x - 3)$

No real solution since $5 - e^3$ is negative.

 $x^2 =$ negative real number

 $A = P\left(1 + \frac{r}{n}\right)^{nt}$

 $4P = P(1.068)^t$

 $\ln 4 = \ln(1.068^t)$

 $\ln 4 = t \ln(1.068)$

 $D = 10 \log\left(\frac{l}{L}\right)$

 $4 = (1.068)^t$

 $4P = P\left(1 + \frac{0.068}{1}\right)^{1 \cdot t}$

Applications

• **Example 1:** If money is invested in a savings account earning 6.8% interest compounded yearly, how many years will pass until the money quadruples? Round to the nearest year.

Recall the compound interest formula.

Substitute A = 4P, r = 0.068, and n = 1.

Simplify.

Divide both sides by *P*.

Take the natural logarithm of both sides.

Solve for *t*.

$$t = \frac{\ln 4}{\ln(1.068)} \approx 21.072229$$

It will take 21 years for the money to quadruple.

• **Example 2:** If someone has a car horn with a sound intensity of 120 dB, how many watts per square meter does the car horn emit?

Recall the definition of a decibel.

Substitute D = 120, $I_T = 1 \times 10^{-12} W/m^2$.

Divide both sides by 10.

Write the equation in exponential form.

Solve for *I*.

$$(I_T)$$

$$120 = 10 \log\left(\frac{I}{1 \times 10^{-12}}\right)$$

$$12 = \log\left(\frac{I}{1 \times 10^{-12}}\right)$$

$$10^{12} = \frac{I}{1 \times 10^{-12}}$$

$$I = \frac{10^{12}}{10^{12}} = 1 \ W/m^2$$

The car horn emits 1 watt per square meter.

Exponential and Models

Exponential Growth Models

• An exponential growth model generally has the form:

 $f(x) = ce^{kx}, \ k > 0,$

where c is the current size of the function (usually the value of f(x) when x = 0), k is the growth rate, and x corresponds to an amount of time.

For example, continuously compounded interest is modelled by an exponential growth model ($A = Pe^{rt}$). Additionally, population growth can be modelled using exponential growth.

• **Example:** If a colony of 300 bacteria is growing exponentially at a rate of 18% per hour, use the formula $N = N_0 e^{rt}$ to find how many bacteria should be in the colony in 12 hours.

 Substitute $N_0 = 300, r = .18$, and
 $N = 300e^{0.18 \cdot 12}$

 t = 12.
 N ≈ 2601.3413

After 12 hours the population of the bacteria colony will be 2601.

Exponential Decay Models

• An exponential decay model generally has the form:

$$f(x) = c e^{-kx}, k > 0,$$

where c is the current size of the function (usually the value of f(x) when x = 0), k is the growth rate, and x corresponds to an amount of time. Notice that an exponential decay model is identical to exponential growth except k is negative for exponential decay. One of the most common uses for an exponential decay model is to model radioactive decay. The formula for radioactive decay is: $m = m_0 e^{-rt}$ where m_0 represents the initial mass at time t = 0, r is the decay rate, t is the time in years, and m is the mass at time t. Typically, the decay rate r is expressed in terms of half-life h where half-life is the time it takes for a quantity to decrease by half. The formula for that is:

$$r=rac{\ln 2}{h}$$

• **Example:** If there was 450g of promethium ¹⁴⁵Pm, how much would be left after 63 years if it has a half-life of 17.7 years? Use the equation $m = m_0 e^{-rt}$. Find r.

$$r = \frac{\ln 2}{h} = \frac{\ln 2}{17.7} \approx .03916$$

$$m = m_0 e^{-rt}$$

 $m = 450 e^{-(.03916)(63)}$
 $m \approx 38.17 \text{mg}$